
Asynchronous Real-time Decentralized Multi-Robot Trajectory Planning

Baskın Şenbaşlar and Gaurav S. Sukhatme

Abstract— We present a novel overconstraining and
constraint-discarding method for asynchronous, real-time, de-
centralized, multi-robot trajectory planning that ensures colli-
sion avoidance. Our approach utilizes communication between
robots. The communication medium is best-effort: messages
may be dropped, re-ordered or delayed. Robots conservatively
constrain themselves against others assuming they may be
working with outdated information, and discard constraints
when they receive update messages from others. Our method
can augment existing synchronized decentralized planning
algorithms that utilize separating hyperplanes for collision
avoidance thereby making them applicable to asynchronous
setups. As an example, we extend an existing model predictive
control based, synchronized, decentralized multi-robot planner
using our method. We show our method’s effectiveness under
asynchronous planning and imperfect communication by com-
paring our extension to the base version. Our extension does not
result in any collisions or synchronization-induced deadlocks to
which the base version is prone.

I. INTRODUCTION

Trajectory planning is a central problem for effective
multi-robot navigation systems, especially when robots are
in close proximity to each other (Fig. 1). It is a fun-
damental challenge in emerging industries like automated
warehouses [1], autonomous driving [2], and automated
intersection management [3]. One approach to solve multi-
robot trajectory planning problems is to utilize central co-
ordination wherein a central entity plans trajectories for all
robots, keeps track of the execution of trajectories, and re-
plans as necessary. Challenges in centralized planning sys-
tems include communication maintenance between the robots
and the central entity, synchronization of robot movements,
computational complexity when the number of robots or the
environment complexity is high, and the necessity of relaying
map information to the central entity if it is not known a
priori. To alleviate these challenges, decentralized trajectory
planning algorithms have been proposed. In these, each robot
plans its own trajectory and coordinates with other robots to
avoid collisions. In some scenarios, planning decentralization
is required because some robots are not controlled by the
same entity. In others, it is attractive because it makes the
planning problem tractable and the navigation system robust
– robots can react to unexpected situations using on-board
capabilities without having to wait for a central entity to
command them.

Both authors are with the Department of Computer Science, Uni-
versity of Southern California, Los Angeles, CA 90007, United
States. baskin.senbaslar@usc.edu, gaurav@usc.edu.
Sukhatme holds concurrent appointments as a Professor at USC and as an
Amazon Scholar. This paper describes work performed at USC and is not
associated with Amazon. During the development of this work, B. Şenbaşlar
was supported by a USC Annenberg Fellowship.

Fig. 1. Twelve quadrotors navigating in close proximity to each other.
Multi-robot trajectory planning is a central problem in close proximity
scenarios. Our approach ensures collision and synchronization-induced
deadlock avoidance between robots when planning is decentralized and
asynchronous.

One often-overlooked problem in decentralized multi-
robot planning algorithms is the inherent asynchronicity that
stems from the planning system. First, since each robot
plans for itself, synchronization of when planning starts is
not practical. Since planning start timestamps are not syn-
chronized, robots use different snapshots of the environment
while planning, which causes disagreements between them
on the definitions of safety. Second, planning end timestamps
between robots are not synchronized, which means that dif-
ferent robots start executing plans at different times, causing
disagreements during plan switching, leading to disagree-
ments on the definitions of safety as well. Additionally, there
is asynchronicity introduced by the communication network
– when robots use a communication channel to coordinate
their actions, their messages may get delayed, dropped or
re-ordered.

We propose a novel approach which ensures that robots do
not collide with each other when planning is asynchronous
and the communication medium is an imperfect best-effort
network. Our contributions are as follows:
• We define mutually computable separating hyper-

plane trajectories that form the basis of our approach.
• Using these trajectories, we propose a novel overcon-

straining and constraint-discarding system for de-
centralized multi-robot asynchronous planning that
ensures safety in the face of message delays, drops, and
re-orderings.

• To illustrate the utility of our approach, we present
an implementation of AsyncBVC (Asynchronous
Buffered Voronoi Cell), an extension of BVC [4]
based on our system. In simulations, we show that
AsyncBVC outperforms BVC in terms of number
of synchronization-induced deadlocks and number of
collisions under asynchronous planning in obstacle
free environments. We also show the performance
of AsyncBVC under message delays, drops and re-
orderings.

II. RELATED WORK

We categorize decentralized multi-robot planning algo-
rithms into reactive planners (or controllers) and long horizon
planners. Given the state of the environment, the states of
other robots and the state of the planning robot, reactive
planners plan for a single action to execute. Long hori-
zon planners plan for multiple actions or long trajectories.
Generally, reactive planners work fast (> 50 Hz), hence the
effects of asynchronous planning are minimal. However, long
horizon planners may take longer durations (0.5 Hz−10 Hz)
since the planned trajectory is longer. While the effects of
asynchronous planning can be felt at any timescale, they are
more readily visible in long horizon planners.
Reactive approaches. Optimal Reciprocal Collision Avoid-
ance (ORCA) [5] is a reactive planner that emits velocity
commands. Given the current positions and velocities of
other robots, each robot computes a safe velocity command
to execute that is as close as possible to the given preferred
velocity command. Another reactive planner that accepts
a preferred action and finds a safe action close to the
desired action is described in [6]. They utilize safety barrier
certificates to make sure that the robots will not leave safe
spaces after applying the chosen actions. GLAS [7] is a
learning-based reactive planner in which a neural network
is trained to output robot actions given the states of other
robots and the environment state. The neural network output
is combined with a classical controller to ensure safety.
Another learning-based approach [8] utilizes graph neural
networks that learn what action to execute given the state
of environment and what to communicate with other robots
for collision avoidance. A third learning-based approach [9]
outputs quadrotor motor commands given the states of other
robots in the environment. Since reactive approaches plan
for a single action to execute, they are prone to deadlocks
and can be combined with long horizon planners for bet-
ter performance. The approaches described above assume
synchronized planning in which each robot uses the same
snapshot of the environment. In these settings, since the
planning frequency is high, the effects of asynchronous
planning are minimized and often not readily visible in
practice.
Long horizon approaches. BVC [4] is a model predictive
control-based long horizon planner that utilizes buffered
Voronoi cells (BVCs). In each planning iteration, each robot
computes its Voronoi cell in the Voronoi tesselation of the
environment, buffers it to account for robot’s collision shape
and plans actions to execute using a quadratic program
making sure that the trajectory stays within the buffered
Voronoi cell. Since each robot does the same, robot-robot
collisions are avoided. Another approach [10] plans for
piecewise Bézier curves using BVCs for collision avoidance.
It plans for trajectories (parts of which may be outside
the BVC), but makes sure that the trajectory is contained
within the BVC until the next planning iteration. Another
model predictive control approach is presented in [11]. They
compute a feasible, smooth Bézier curve for each robot and

use Bézier curve samples in the robot’s controller behavior
model and plan using a quadratic optimization formulation.
Another optimization approach that plans for piecewise
Bézier curves [12] ensures collision avoidance using rela-
tive safe flight corridors. The method of [13] extends that
of [10] to robots with generalized collision shapes by uti-
lizing support vector machines instead of Voronoi diagrams.
Similar to the reactive approaches, these approaches assume
synchronized planning. However, unlike reactive approaches,
when planning at in low frequency, these approaches may
result in collisions. MADER [14] attempts to solve problems
stemming from asynchronous planning using communication
by utilizing a plan-commit scheme, in which each robot i
plans a trajectory and commits it if no other robot planned
a trajectory that collides with the planned trajectory of robot
i during the planning process of robot i. However, they
assume that the communication channel is failure and delay-
free. When a robot sends a message, it is assumed that
other robots receive it instantly without message drops. This
is an unrealistic assumption for practical communication
networks.

Centralized offline approaches exist to solve the multi-
robot trajectory planning problem. We do not review them
here since our focus is on decentralized real-time planning
algorithms. As we will discuss, our method can be applied
to several synchronized real-time decentralized multi-robot
planning algorithms that enforce robot-robot collision avoid-
ance using separating hyperplanes between robot geometries
(examples include [4], [10], [13]), in order to extend them to
asynchronous planning systems. In this paper, we show how
to do this in practice with one such approach (based on [4]).

III. PROBLEM

Consider a team of N robots tasked with navigating from
their start positions si ∈ Rd to their corresponding goal
positions gi ∈ Rd without collisions where i ∈ {1, . . . , N}
is the index of a robot. The robots may potentially all have
different shapes and sizes. We model robots as non-rotating
rigid bodies. Let Ri : Rd → P(Rd) be the collision shape
function of robot i, such that Ri(p) is the subset of Rd
occupied by robot i when it is placed at position p. Here,
d ∈ {2, 3} is the dimension of the Euclidean space that robot
operates in and P(Rd) is the power set of Rd. We define
Ri(p) as the Minkowski sum R0

i ⊕ {p}, where R0
i is the

subset of Rd occupied by robot i when it is placed at the
origin 0. For simplicity of exposition, we assume that the
environment is obstacle-free.

The general problem is to compute trajectories fi(t) :
[0, T]→ Rd for each robot i along with the team navigation
duration T such that
• fi(t) is dynamically feasible according to ith robot’s

dynamics,
• Ri(fi(t))∩Rj(fj(t)) = ∅ ∀t ∈ [0, T] ∀i 6= j, i.e. robots

do not collide with each other,
•

dkfi(0)
dtk

= dkfi(T)
dtk

= 0 ∀k ≥ 1 ∀i ∈ {1, . . . , N}, i.e.
robots are stationary at the start and the end of the
computed trajectories.

• fi(0) = si, fi(T) = gi ∀i ∈ {1, . . . , N}, i.e. the
computed trajectory for each robot commences at its
start position and ends at the prescribed goal position.

We focus on a subset of decentralized receding horizon
planning style approaches to solve the general problem
above. In decentralized receding horizon planning, robots
plan long trajectories in real-time for themselves using on-
board capabilities. They execute the planned trajectories for
a short duration, and re-plan. Our focus is on algorithms that
utilize separating hyperplanes between robots as collision
avoidance constraints.

Robots may communicate with each other using a best-
effort communication medium, but each robot plans a tra-
jectory only for itself. The delay of the communication
medium need not be bounded and can theoretically grow to
infinity. The delay may freely vary from message to message.
Messages sent through the medium may get lost or reordered.

Planning start and end times across robots need not be
synchronized and planning algorithms are not necessarily
proven to be failure-free.

IV. PRELIMINARIES

A hyperplane H is defined by a normal vector Hn and an
offset Ha such that H = {p ∈ Rd | Hn · p +Ha = 0}. A
hyperplane H bounds two half-spaces, namely H+ = {p ∈
Rd | Hn · p + Ha ≥ 0} and H− = {p ∈ Rd | Hn · p +
Ha ≤ 0}. Given two sets A ⊂ Rd and B ⊂ Rd, a separating
hyperplane H between A and B satisfies either A ⊆ H+

and B ⊆ H− or A ⊆ H− and B ⊆ H+, i.e. A is in one
side of the hyperplane and B is in the other side. A and B
are called linearly separable, if and only if there exists an
hyperplane that separates them. If both A and B are disjoint
non-empty convex sets, there exists a separating hyperplane
between them by the separating hyperplane theorem.

Definition 1: Commutative Deterministic Separating
Hyperplane Computation Algorithm. A commutative de-
terministic separating hyperplane computation algorithm Ω
accepts two linearly separable sets A and B as arguments,
and computes a separating hyperplane between A and B such
that the computed hyperplanes do not depend on the order of
the arguments, i.e. Ω(A,B) = Ω(B,A), and the computed
hyperplane is same for each call with the same arguments,
i.e. there is no randomization.

Definition 2: Mutually Computable Separating Hyper-
plane. Given two linearly separable sets A and B and an
hyperplane H that separates them, H is called a mutually
computable separating hyperplane for A and B if and only
if there exists a commutative deterministic separating hyper-
plane computation algorithm Ω such that Ω(A,B) = H.

V. MOTIVATION

Commutative deterministic separating hyperplane compu-
tation algorithms are used by several state-of-the-art decen-
tralized real-time planning algorithms for collision avoid-
ance. At each planning iteration, robots sense each others’
geometries (positions and shapes). Each robot computes
separating hyperplanes between itself and other robots using

a shared commutative deterministic separating hyperplane
computation algorithm. Robots constrain their movements
to the regions bounded by the computed separating hyper-
planes during planning. Since the commutative determinis-
tic separating hyperplane computation algorithm is shared
among robots, each pair of robots compute exactly the same
hyperplane using only geometry sensing: each robot in the
pair constrains itself against the other using this hyperplane.
Therefore, regions used to constrain robot movements are
disjoint between robots.

In [4] and [10] robots are modeled as hyperspheres and
Voronoi diagrams are utilized for computing separating hy-
perplanes. Voronoi diagrams between hyperspherical shapes
are unique, hence the algorithm is deterministic. For hy-
perspherical disjoint sets, Voronoi hyperplane computation
algorithm is commutative, hence robots can compute the
same hyperplane between each other using only geometry
sensing. In [13] robots are modeled as convex shapes and
a hard-margin support vector machine (SVM) is used for
computing separating hyperplanes. The hard-margin SVM
problem is convex with a unique solution. Therefore it is
commutative and deterministic.

When robots are in close proximity to each other, the
success of these approaches depends on two important
assumptions that are hard to realize in practice: i) pairs
of robots must use the same inputs during separating hy-
perplane computation - this holds only if the assumption
of synchronization of planning start times between robots
holds, and ii) robots start executing the plans at the same
time, which assumes synchronization of planning end times
between robots. In physical deployments, such synchroniza-
tion is not realistic. This creates a mismatch between the
separating hyperplanes computed and/or used by robots as
shown in Fig. 2. The mismatch of hyperplanes introduces
safety regions that intersect with each other, which results in
unsafe behavior in tight scenarios.

We introduce mutually computable separating hyperplane
trajectories as a solution to this problem. Instead of con-
straining a robot by a single hyperplane for each other
robot, we constrain it with a carefully pruned trajectory of
hyperplanes.

VI. APPROACH

A. Assumptions

We assume that robot clocks are synchronized prior to
navigation (using for example, the Network Time Protocol
(NTP) [15]). This ensures that the timestamps used by
the robots share the same frame of reference. Second, we
assume that robots can sense each others’ geometries and
can identify each other instantly. In reality, assuming visual
sensing, there is a time delay after light hits the camera
until the robot detects the geometry of another robot and
identifies it. We omit this delay. Frame-by-frame tracking
and identification of robots can be done in 30 Hz with state-
of-the art object detectors [16]. Third, we assume that robots
share a commutative deterministic separating hyperplane

(a) Initial robot geometries and
enforced separating hyperplanes.

(b) Green hyperplane is used by
the yellow robot during planning.

(c) Black region is considered
safe by both robots when yellow
robot finishes planning.

(d) Brown hyperplane is used by
the blue robot during planning.

(e) Black region is considered
safe by both robots when blue
robot finishes planning.

Fig. 2. Hyperplane mismatch leads to unsafe behavior. Blue and yellow robots utilize Voronoi hyperplanes to create safe regions within which to
plan. However, when planning start and end times between robots are not synchronized, the Voronoi hyperplanes computed do not match. 2a shows
robots geometries (shapes and positions) and enforced Voronoi half-spaces for each robot just before the yellow robot starts planning (assuming perfect
synchronization before the current planning iteration). The green half-space in 2b is the Voronoi half-space that the yellow robot computes and utilizes
during planning. While the yellow robot is planning its own trajectory, robots keep moving according to their previous plans. When the yellow robot
finishes planning as shown in 2c, the safe regions of the blue and yellow robots intersect (intersection shown in black). Both robots are allowed to navigate
through the black region, which would result in collisions if they did so. Robots keep moving before the blue robot starts planning. The brown half-space
in 2d is the Voronoi half-space the blue robot utilizes during planning. While the blue robot is planning, robots continue moving. When the blue robot
finishes planning (2e), the safe regions of the robots intersect at another location.

Fig. 3. Hyperplane trajectories. Trajectories of blue and yellow robots
are given. The red trajectory is the trajectory of middle points of robots at
each timestep. Red hyperplanes constitute the mutually computable Voronoi
hyperplane trajectory between robots.

computation algorithm Ω, which is given to them prior to
navigation.

B. Mutually Computable Separating Hyperplane Trajecto-
ries

Without the loss of generality, assume that the navigation
starts at timestamp 0. Let T̃ be the current timestamp. Let
fi(t) : [0, T̃]→ Rd and fj(t) : [0, T̃]→ Rd be the trajectories
that robot i and robot j traversed until the current timestamp
respectively. The mutually computable separating hyperplane
trajectory Hi,j(t) : [0, T̃] → Hd between robot i and robot
j induced by Ω is defined as

Hi,j(t) = Ω(Ri(fi(t)),Rj(fj(t))) ∀t ∈ [0, T̃]

where Hd is the set of all hyperplanes in Rd.
Notice that Hi,j can be computed without communication

by both robot i and robot j independently as it requires
geometry sensing only. Also, Hj,i = Hi,j since Ω is
commutative. An example mutually computable hyperplane

trajectory is shown in Fig. 3 when the commutative deter-
ministic hyperplane computation algorithm is the Voronoi
hyperplane computation algorithm.

C. Overconstraining & Constraint-discarding using Mutu-
ally Computable Separating Hyperplane Trajectories and
Inter-Robot Communication

Our approach is based on the following idea: If each pair
(i, j) of robots share a constraining hyperplane, collision
avoidance between them can be ensured. In order to ensure
that robots share a constraining hyperplane at all times, we
constrain them with all hyperplanes in a portion of the Hi,j
in a specific way.

Each robot i stores a tail timestamp variable Ti,j ≤ T̃
for every other robot j denoting the timestamp after which
the hyperplane trajectory should be used to constrain the
trajectory of robot i against robot j where T̃ is the current
timestamp. In other words, at any instant T̃ , if robot i
starts planning, it uses hyperplanes Hi,j(t) ∀t ∈ [Ti,j , T̃]
to constrain itself against robot j. Initially, we set Ti,j =
0 ∀i 6= j. Hence, robots use full mutually computable
separating hyperplane trajectories to avoid collisions with
each other. This ensures that robot i and robot j will not
collide with each other for the initial values of Ti,j since they
are stationary until the end of their first planning iterations
and they share Hi,j(0) afterwards.

Remark 1: For a given robot i, its planning start times-
tamps are strictly increasing.

Lemma 1: Assume that robot j successfully planned using
information at time τ . The following facts hold for its
constraints against every other robot i:

1) Robot j is constrained by the hyperplane Hi,j(τ).
2) In the future, there can be no case in which robot j

uses a hyperplane from timespan [0, τ) to constrain
itself against robot i in which it does not also use the
hyperplane at time τ .

Proof: Since Tj,i is less than or equal to the current
timestamp T̃ at all times and τ = T̃ at the start of the
planning, robot j uses Hi,j(τ) as a constraint. By Remark 1,

planning start timestamps of robot j strictly increase. There-
fore in the future, any planning start timestamp τ ′ will be
greater than τ . If robot j uses any hyperplane from timespan
[0, τ) during planning in the future, it means that Tj,i < τ .
Since it uses hyperplanes in timespan [Tj,i, τ

′], it has to use
the hyperplane at time τ as well.

Lemma 1 suggests that if a robot j plans successfully using
the information at timestamp τ , there is no reason for another
robot i to use hyperplanes against robot j before timestamp
τ , because robot j is currently constrained by the hyperplane
Hi,j(τ) at time τ and there will not be any case in the future
at which it is constrained by a hyperplane in timespan [0, τ)
in which it is not constrained by the hyperplane at timestamp
τ . Therefore, every other robot i can prune its hyperplane
trajectory Hi,j against robot j by setting Ti,j = τ . Updating
Ti,j with this rule ensures that each pair (i, j) of robots share
a constraining hyperplane at all times because i) Hi,j(0) is
shared by robots i and j initally, and ii) pruning is done
in a way that makes sure that there is at least one shared
hyperplane at all times.

Conveying the information to every other robot i that
robot j planned successfully at timestamp τ is done through
the communication medium. Whenever robot j successfully
plans a trajectory, it broadcasts the planning success signal
(j, τ), stating that it planned successfully using the informa-
tion at timestamp τ , and there is no reason for other robots
to constrain themselves against robot j using hyperplanes
in timespan [0, τ). Until the message arrives, every other
robot i overconstrains itself against robot j with hyperplanes
in [Ti,j , τ) ∪ [τ, T̃], but discards constraints generated from
hyperplanes in timespan [Ti,j , τ) when message arrives by
setting Ti,j = τ . When message re-ordering in the commu-
nication medium is possible, Ti,j = max(Ti,j , τ) is used.

If a planning success signal from robot j gets lost in the
communication medium, other robots i do not update their
Ti,j values and keep overconstraining themselves against
robot j until a signal from robot j arrives. This allows robots
to assume the worst about robot j (i.e., it planned success-
fully at Ti,j and it is not known if it planned successfully
again in timespan (Ti,j , T̃]) until a message arrives. Ti,j
represents the last known timestamp to robot i at which robot
j has planned a trajectory successfully.

Note that, if an upper bound U exists on the time dif-
ference between two successful planning iterations for all
robots, constraints can be discarded even without commu-
nication. Here, Ti,j is the timestamp at which robot j has
planned (or after which robot j must have planned) according
to robot i. Robot i simply makes sure that T̃ − Ti,j ≤ U
by setting Ti,j = max(Ti,j , T̃ − U) at each iteration for
asynchronous safety because robot j plans successfully at
least once in every time window of duration U .

VII. EXPERIMENTS
A. Buffered Voronoi Cell (BVC) Planner

We validate our approach using a decentralized model
predictive control-based planner that uses Voronoi diagrams
for collision avoidance [4]. It models robots as hyperspheres

parameterized by robot radii. At each planning iteration,
Voronoi hyperplanes between robots are computed, buffered
to account for robot radii, and used to constrain robot
positions. The original formulation of the BVC planner uses
discrete single integrator dynamics; we use its extension to
discrete linear dynamics with position outputs. Each robot
i solves the following convex quadratic program during
planning, making sure that the output (position) is contained
in the buffered Voronoi cell of the robot.

min
u0,...,uM−1

M∑
k=1

λk ‖pk − gi‖22 +

M−1∑
k=0

θk ‖uk‖22 s.t.

xk+1 = Axk + Buk ∀k ∈ {0, . . . ,M − 1}
pk = Cxk ∀k ∈ {0, . . . ,M}
Ri(pk) ∈ Vi ∀k ∈ {0, . . . ,M}
umin � uk � umax ∀k ∈ {0, . . . ,M − 1}
xmin � xk � xmax ∀k ∈ {0, . . . ,M}

where gi, Vi and Ri are the goal position, Voronoi cell, and
hyperspherical collision shape function of robot i, M is the
number of steps to plan for, uk is the input to apply from
timestep k to timestep k + 1, xk is the state of robot at
timestep k, pk is the position of robot at timestep k, A, B
and C are matrices that describe the dynamics of the robot,
umin and umax are the limits for inputs, xmin and xmax are
the limits for states. The cost of the optimization problem
is a weighted combination of the distance of intermediate
and final robot positions to the goal position and the input
magnitudes. λks and θks are weight parameters of the
cost function. The constraint Ri(pk) ∈ Vi is enforced by
buffering the Voronoi hyperplanes with the robot radius, and
constraining the pk with the buffered Voronoi hyperplanes.

B. Asynchronous Buffered Voronoi Cell (AsyncBVC) Planner

In order to ensure safety of BVC under asynchronous
planning, we integrate mutually computable separating hy-
perplane trajectories to the BVC planner by replacing the
Voronoi cells with the Voronoi hyperplane trajectories.

Each robot uses Voronoi hyperplane computation algo-
rithm as the commutative deterministic hyperplane com-
putation algorithm Ω. They construct mutually computable
separating hyperplane trajectories, or Voronoi hyperplane tra-
jectories specifically, as described in Section VI-B and keep
track of tail timestamp variables as described in Section VI-
C. We call this algorithm asynchronous buffered Voronoi cell
planner, or AsyncBVC for short.

Each robot i solves the following optimization problem:

min
u0,...,uM−1

M∑
k=1

λk ‖pk − gi‖22 +

M−1∑
k=0

θk ‖uk‖22 s.t.

xk+1 = Axk + Buk ∀k ∈ {0, . . . ,M − 1}
pk = Cxk ∀k ∈ {0, . . . ,M}
Ri(pk) ∈ H−i,j(t) ∀k ∈ [0, . . . ,M] ∀j 6= i ∀t ∈ [Ti,j , T̃]

umin � uk � umax ∀k ∈ {0, . . . ,M − 1}
xmin � xk � xmax ∀k ∈ {0, . . . ,M}

Signal Medium

Gazebo

Planner

Controller

Localizer / Robot Detector

/hummingbird1

planned
state

sequence

motor commands

self state

self sta
te

planning success signals

other robot

geometries all robotgeometries

Planner

Controller

Localizer / Robot Detector

/hummingbirdN

planned
state
sequence

motor commands

self
 sta

te

self state

planning success signals

oth
er r

obo
t

geo
metri

es

all rob
ot

geometries

Fig. 4. System design. Each robot has 3 components: a planner, a controller and a localizer/robot detector. The planner plans for a sequences of states,
which gets fed into the controller. The controller sends motor commands to the simulator (Gazebo) to track the planned sequence. The localizer/robot
detector connects directly to the simulator and feeds other robot geometries and ego robot state to the planner and the controller. A signal medium process
acts as a message broker between planners of different robots. We introduce communication delays and message drops using the signal medium process.

where H−i,j(t) is the robot i’s side of the hyperplane Hi,j(t)
against robot j and T̃ is the current timestamp. Similarly to
BVC, the constraint Ri(pk) ∈ H−i,j(t) is enforced by buffer-
ing the hyperplane with the robot radius, and constraining the
pk with the buffered hyperplane.

This is a convex quadratic problem with linear constraints.
However, since time is continuous, there are infinitely many
hyperplanes in the trajectory Hi,j , which results in infinitely
many constraints in the optimization problem. We solve this
problem by using a sequence of hyperplanes between robot
i and robot j using a fine discretization of the full trajectory.
Whenever robot i detects the geometry of and identifies
another robot j, we compute a new separating hyperplane
between them using Ω and add it to the separating hyperplane
list of robot i against robot j. This is an approximation
we employ for computational tractability. Whenever robot
i receives a planning success signal (j, τ) from robot j, we
discard hyperplanes that are generated before τ from the
sequence of robot i against robot j.

If the optimization fails for a robot i, it keeps using the
previous plan. When robot i’s planner fails, it does not
broadcast a planning success signal, and other robots keep
constraining themselves against robot i using the constraints
starting from and including the timestamp robot i last
succeeded. Hence, the collisions are avoided even under a
planner failure, since at any point of time, plans of any pair
of robots are constrained by at least one common separating
hyperplane.

C. Experiment Design

We compare the behavior of BVC and AsyncBVC when
message drops, delays, re-orderings and timestamp mis-
matches are introduced using simulations. We use the RotorS
MAV Gazebo simulator [17] running on a desktop computer
with 16 core Intel i9-9900 CPU @ 3.10GHz, Ubuntu 20.04
operating system and ROS Noetic. We plan in 3D using
AscTec Hummingbird quadrotors already integrated into the
RotorS simulator.

In all experiments, 4 robots are placed in a square
formation where they are at [−10 0 5.0]T , [10 0 5.0]T ,
[0 − 10 5.0]T , [0 10 5.0]T initially. Robots at the opposite
ends of the square swap positions.

The general design of our simulation system is shown in
Fig. 4. Each robot’s planning pipeline has 3 main compo-
nents: a planner, a controller and a localizer/robot detector.

The planner is set to either BVC or AsyncBVC. In all
experiments, we use spheres with radii r = 0.4 m to
model robots. The real radius of AscTec Hummingbirds is
0.27 m. We utilize extra 0.13 m as the buffer zone. In all
experiments, we use discretized double integrator dynamics
during planning for the robots hence control actions uk are
acceleration commands, and states xk are stacked position
and velocity vectors in both BVC and AsyncBVC. We
set input upper and lower bounds to umax = −umin =
[5 m/s2 5 m/s2 5 m/s2]T , state upper bounds to xmax =
[∞ ∞ ∞ 2 m/s 2 m/s 2 m/s]T and state lower bounds to
xmin = [−∞ −∞ r −2 m/s −2 m/s −2 m/s]T i.e. the
maximum acceleration along any axis is 5 m/s2, maximum
velocity along any axis is 2 m/s, and all positions except
those with z coordinates less than the robot radii r are
allowed.

We plan for 20 steps with discretization timestep of
0.2 s (i.e. 4 s long trajectories). We set λk = 2 for all k
and θk = 1 for all k. The planner sends planned state
sequences to the controller for execution. We use one of
the controllers integrated into RotorS simulator which is
based on [18]. It sends motor commands to the simulator
process to track the planned state sequence. The local-
izer/robot detector component simply receives perfect state
and shape information from Gazebo simulator and feeds
them to the planner and controller. The frequency of robot
detection is 30 Hz, which results in discretization step length
of 33 ms for the separating hyperplane trajectories. Planners
on different robots send planning success signals to each
other through the signal medium process, which acts as
a message broker between planners. BVC does not need
communication between planners, therefore signal medium is
not utilized when the planner is BVC. When the planner is
set to AsyncBVC, it uses the signal medium to broadcast
planning success signals described in Section VI-C. We
introduce artificial communication delays, message drops and
message re-orderings to the system using the signal medium
process. We model communication delays using exponential
probability density functions of the form

Pdelay(x;α) =

{
αe−αx x ≥ 0

0 x < 0
,

where 1/α ≥ 0 is the mean delay. The most probable delay
in this distribution is 0, and the probability decreases as the
delay increases. Message re-orderings are naturally generated

by different per-message delays generated from the given
delay distribution.

We model message drop probability with a Bernoulli
distribution of the form

Pdrop(x;β) =

{
β x is drop
1− β x is no-drop.

D. Evaluation Metrics

We evaluate the performance of algorithms using 4 met-
rics: number of robots that are involved in at least one
collision during navigation (# Coll.), number of robots that
reach their goal positions (# Goal Reaching), number of
robots that get stuck in synchronization-induced deadlocks (#
Deadlocks), and the maximum navigation time among robots
from their start to goal position (Makespan).

Synchronization-induced deadlocks occur because of sep-
arating hyperplane mismatches between robots when they
are close to each other as shown in Fig 5. Since we model
robots with spheres larger than the actual robot dimensions
(which we call collision shapes), planners plan for avoiding
the spheres containing the actual robots. When a separating
hyperplane mismatch occurs when robots are close to each
other, their collision shapes may intersect with each other
even if the real robots do not collide. This creates a situation
at which planners cannot find collision free solutions because
the robot is initially in a collision state. This results in a
deadlock because the planner fails continuously. We call this
a synchronization-induced deadlock.

In the simulations, robots that are involved in collisions
can continue navigation because the controller can recover
from them as the speed of the robots is not high.

E. Effects of Planning Start and End Time Mismatch

First, we check the behavior of BVC and AsyncBVC
when the planning start and end times do not match between
robots. We change the planning frequency f to create this
mismatch. If planning frequency of robots is set to f , a
planning iteration occurs every 1/f seconds. This creates a
maximum of 1/f seconds mismatch between planning start
times of a pair robots. The planning end time is the sum of
planning start time and planning duration. There is no bound
on planning duration, but it does not take longer than 100 ms
in our experiments, thereby creating a mismatch between

Fig. 5. Synchronization-induced deadlock due to separating hyperplane
mismatch. (left) Robots go into a collision state because of a separating
hyperplane mismatch and (right) planning fails for the yellow robot because
it initially violates the new red hyperplane.

TABLE I
EFFECTS OF PLANNING START/END TIME MISMATCH. METRICS ARE

AVERAGED OVER 5 RUNS IN EACH SCENARIO.

Freq. 2Hz 1Hz 0.5Hz
Max. Start Mismatch 0.5 s 1 s 2 s

BVC
Coll. 0 2 2.4

Deadlocks 0 0.4 2.2
Goal Reaching 4 3.6 1.8

AsyncBVC
Coll. 0 0 0

Deadlocks 0 0 0
Goal Reaching 4 4 4

planning end times no more than 1/f + 0.1 seconds. Note
that we do not use this value as an upper bound between
the timestamps of two successful planning iterations because
there is no guarantee that the planner always succeeds. We
thus set the upper bound to ∞. We set mean delay time
1/α = 0 and message drop probability β = 0 in all
experiments, meaning that the network has no delay and
does not drop messages, to show the affects of only planning
start/end time mismatches.

The results of our comparisons are listed in Table I. We run
each experiment 5 times and report the average of the metrics
across runs. We do not report the makespan of navigation
between algorithms because the difference is not significant
when the communication is instantaneous and failure-free.

In experiment 1, we set planning frequency to 2 Hz,
which creates a maximum planning start time mismatch
of 0.5 s. In this case, neither BVC nor AsyncBVC results
in any synchronization-induced deadlocks or collisions and
all robots reach their goal positions. In experiment 2, we
decrease planning frequency to 1 Hz, which creates a max-
imum planning start time mismatch of 1 s. In this case, 2
out of 4 robots using BVC collide at least once on average,
0.4 out of 4 robots deadlock on average, and 3.6 out of 4
robots reach their goals on average. AsyncBVC does not
result in any collisions or deadlocks. In experiment 3, we
decrease planning frequency further to 0.5 Hz, which creates
a maximum planning start time mismatch of 2 s. BVC suffers
from this mismatch siginficantly. On average 2.4 out of 4
robots collide at least once, and 2.2 out of 4 get stuck
in synchronization-induced deadlocks, leaving 1.8 robots on
average reaching their goals. AsyncBVC does not result in
any collisions or deadlocks.

F. Effects of Best-Effort Communication Medium

Next, we investigate the effects of communication delays
and message drops on the performance of AsyncBVC. We
do not investigate the behavior of BVC in this set of
experiments because BVC does not utilize communication.
We set planning frequency f = 1 Hz in all experiments
which creates a maximum planning start time mismatch of
1 s. As before, we set upper bound of time difference between
successful planning iterations to ∞.

The results of our experiments are summarized in Table II.
As before, we run each experiments 5 times and report the
average of the metrics across runs. In experiment 1, we show
the performance of AsyncBVC when there is no communi-

TABLE II
EFFECTS OF COMMUNICATION DELAYS AND MESSAGE DROPS TO

ASYNCBVC. METRICS ARE AVERAGED OVER 5 RUNS IN EACH

SCENARIO. 1/α IS THE MEAN DELAY AND β IS THE MESSAGE DROP

PROBABILITY.

1/α β # Coll. # Deadlocks # Goal Makespan
Reaching

1 0 0 0 0 4 20.82 s
2 1 s 0 0 0 4 25.57 s
3 1 s 0.1 0 0 4 26.68 s
4 2 s 0.1 0 0 4 28.31 s
5 2 s 0.2 0 0 4 28.92 s
6 10 s 0.2 0 0 4 40.88 s
7 10 s 0.5 0 0 4 48.04 s
8 10 s 0.75 0 0 4 92.26 s
9 — 1.0 0 4 0 ∞

cation delay, i.e. mean delay is 0, and no message drops, i.e.
message drop probability is 0. In this case, no robots collide
with each other, and no robots get stuck in deadlocks. The
makespan of the navigation, i.e. the maximum navigation
duration of all robots, is 20.82 s. From experiment 2 to
experiment 8, we increase mean delay from 0 to 10 s and
message drop probability from 0 to 0.75. In experiment 8,
for example, 3 out of 4 messages get lost in the medium, and
1 that does not get lost arrives 10 s late on average. In all
experiments from 2 to 8, no robots collide with each other,
and no robots deadlock. Makespan increases from 25.57 s
(experiment 2) to 92.26 s (experiment 8).

When the message drop probability is set to 1.0 in
experiment 9, i.e. when all messages are dropped, all robots
get deadlocked, because they are overly constrained by the
full separating hyperplane trajectories. This problem can be
solved if there is an upper bound on time difference between
two successful planning iterations for the robots in the team
as explained in Section VI-C.

VIII. CONCLUSION

In this paper, we present a novel overconstraining and
constraint-discarding method for asynchronous real-time de-
centralized trajectory planning algorithms in multi-robot
teams. Each robot overly constrains itself against other robots
using mutually computable separating hyperplane trajectories
until it receives a planning success signal from them. A
portion of the constraints are discarded after a success
signal is received from another robot. Our approach is a
principled way for dealing with asynchronous planning and
imperfect communication in real-time decentralized multi-
robot systems.

Based on these ideas, we extend the BVC planner [4],
which assumes synchronization in planning, to adapt it to an
asynchronous setting. We call our extension AsyncBVC. We
compare AsyncBVC with BVC and show that AsyncBVC
does not result in any collisions or synchronization-induced
deadlocks, while BVC is prone to these phenomena. We also
demonstrate the encouraging behavior of AsyncBVC under
message drops, message re-orderings and message delays.

In the future, we plan to apply our overconstraining and
constraint-discarding method to other planners that utilize

separating hyperplanes between robots for robot-robot colli-
sion avoidance.

ACKNOWLEDGMENT

We thank James A. Preiss, Wolfgang Hönig, and Jingyao
Ren for their inputs and comments on writing of this paper.

REFERENCES

[1] P. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Magazine,
vol. 29, pp. 9–20, 2008.

[2] A. Furda and L. Vlacic, “Enabling safe autonomous driving in real-
world city traffic using multiple criteria decision making,” IEEE
Intelligent Transportation Systems Magazine, vol. 3, no. 1, pp. 4–17,
2011.

[3] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research,
vol. 31, pp. 591–656, 2008.

[4] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.

[5] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in Distributed Autonomous Robotic Systems: The
10th International Symposium, 2013, pp. 203–216.

[6] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[7] B. Riviere, W. Hönig, Y. Yue, and S.-J. Chung, “GLAS: Global-to-
local safe autonomy synthesis for multi-robot motion planning with
end-to-end learning,” IEEE Robotics and Automation Letters, vol. PP,
pp. 1–1, 2020.

[8] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 11 785–11 792.

[9] S. Batra, Z. Huang, A. Petrenko, T. Kumar, A. Molchanov, and
G. S. Sukhatme, “Decentralized control of quadrotor swarms with
end-to-end deep reinforcement learning,” in 5th Conference on Robot
Learning, CoRL 2021. PMLR, 2021.

[10] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust trajectory execu-
tion for multi-robot teams using distributed real-time replanning,” in
Distributed Autonomous Robotic Systems (DARS), 2019, pp. 167–181.

[11] C. Luis, M. Vukosavljev, and A. Schoellig, “Online trajectory gener-
ation with distributed model predictive control for multi-robot motion
planning,” IEEE Robotics and Automation Letters, vol. PP, pp. 1–1,
2020.

[12] J. Park and H. J. Kim, “Online trajectory planning for multiple
quadrotors in dynamic environments using relative safe flight corridor,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 659–666,
2021.

[13] B. Şenbaşlar, W. Hönig, and N. Ayanian, “RLSS: Real-
time Multi-Robot Trajectory Replanning using Linear Spatial
Separations,” p. arXiv:2103.07588, 2021. [Online]. Available:
https://arxiv.org/abs/2103.07588

[14] J. Tordesillas and J. P. How, “MADER: Trajectory planner in multi-
agent and dynamic environments,” IEEE Transactions on Robotics,
2021.

[15] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time
protocol version 4: Protocol and algorithms specification,” Internet
Requests for Comments, RFC 5905, June 2010. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5905

[16] A. Bochkovskiy, C. Wang, and H. M. Liao, “YOLOv4: Optimal
speed and accuracy of object detection,” CoRR, vol. abs/2004.10934,
2020. [Online]. Available: https://arxiv.org/abs/2004.10934

[17] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating
System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo MAV
Simulator Framework, pp. 595–625.

[18] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se(3),” in 49th IEEE Conference on Decision
and Control (CDC), 2010, pp. 5420–5425.

